
Stephen Checkoway

Programming Abstractions
Week 14-2: Call With Current Continuation

Some more CPS examples

map-k: CPS version of map

collatz-k: CPS version of collatz

fib-k: CPS version of fib

map-k-k: CPS version of map that takes a CPS f

From last time

A continuation is determined by the expression's evaluation context at run time

(define (fact n)

 (cond [(zero? n) 1]

 [else (* n (fact (sub1 n)))]))

At the point 1 is evaluated in the call (fact 0), the continuation is □

At the point 1 is evaluated in the call (fact 1), the continuation is (* 1 □)

At the point 1 is evaluated in the call (fact 2), the continuation is 

(* 2 (* 1 □))

Key: The continuation is all the rest of computation

The current continuation

At every point in a computation the current continuation is the continuation of

whatever expression is currently being evaluated

The current continuation is constantly changing

Example

(define (fact n)

 (cond [(zero? n) 1]

 [else (* n (fact (sub1 n)))]))

(fact 3)

redex current continuation value

(fact 3) □ —

(zero? 3) (cond [□ 1][else (* 3 (fact (sub1 3)))]) #f

(* 3 (fact (sub1 3))) □ —

(fact (sub1 3)) (* 3 □) —

Example: continued

redex current continuation value

(fact 3) □ —

(zero? 3) (cond [□ 1][else (* 3 (fact (sub1 3)))]) #f

(* 3 (fact (sub1 3))) □ —

(fact (sub1 3)) (* 3 □) —

(sub1 3) (* 3 (fact □)) 2

(fact 2) (* 3 □) —

(zero? 2) (* 3 (cons [□ 1][else (* 2 (fact (sub1 2)))]) #f

(* 2 (fact (sub1 2))) (* 3 □) —

(fact (sub1 2)) (* 3 (* 2 □)) —

Example: continued

redex current continuation value

(fact (sub1 2)) (* 3 (* 2 □)) —

(sub1 2) (* 3 (* 2 (fact □))) 1

(fact 1) (* 3 (* 2 □)) —

(zero? 1) (* 3 (* 2 (cons [□ 1][else (* 1 (fact (sub1 1)))])) #f

(* 1 (fact (sub1 1))) (* 3 (* 2 □)) —

(fact (sub1 1)) (* 3 (* 2 (* 1 □))) —

(sub1 1) (* 3 (* 2 (* 1 (fact □)))) 0

(fact 0) (* 3 (* 2 (* 1 □))) —

(zero? 0) (* 3 (* 2 (* 1 (cons [□ 1][else (* 0 (fact (sub1 0)))]))) #t

Example: continued

redex current continuation value

(zero? 0) (* 3 (* 2 (* 1 (cons [□ 1][else (* 0 (fact (sub1 0)))]))) #t

1 (* 3 (* 2 (* 1 □))) 1

(* 1 1) (* 3 (* 2 □)) 1

(* 2 1) (* 3 □) 2

(* 3 2) □ 6

Example: simplified
Let's just look at the recursive calls

redex current continuation value

(fact 3) □ —

(fact 2) (* 3 □) —

(fact 1) (* 3 (* 2 □)) —

(fact 0) (* 3 (* 2 (* 1 □))) 1

(* 1 1) (* 3 (* 2 □)) 1

(* 2 1) (* 3 □) 2

(* 3 2) □ 6

Example 2: With an accumulator

(define (fact-a n acc)

 (cond [(zero? n) acc]

 [else (fact-a (sub1 n) (* n acc))]))

(fact-a 3 1)

redex current continuation value

(fact-a 3 1) □ —

(fact-a 2 3) □ —

(fact-a 1 6) □ —

(fact-a 0 6) □ 6

Tail-recursive calls

In the first example, the continuation changes at each recursive call

In the second example, the continuation doesn't change at the recursive calls

‣ It does fluctuate a bit as sub-expressions like (* n acc) are evaluated

Continuation of a general recursion grows with each recursive call

Continuation of tail-recursion remains constant with each recursive call

call-with-current-continuation

call/cc

Call with current continuation

Scheme gives the programmer programatic access to the current continuation

(call-with-current-continuation proc)  
(call/cc proc)

‣ proc is a 1-argument procedure

‣ proc is called with the current continuation as an argument

Call/cc
(call/cc (λ (k) body))

When this is evaluated

‣ it calls the λ with the current continuation as the argument

‣ within body, calling k with a value, (k value), immediately returns from

call/cc with value as the result

‣ if k is not called in body, the return from call/cc has the value of body

Examples

(call/cc (λ (k) (k 42)))

k is called with value 42 => result is 42

(call/cc (λ (k) 42))

k is not called, so the result just the body, namely 42

Less simple example

(call/cc (λ (k) (* 5 3 (k 2))))

k is called with the value 2, so the result is 2

What is the value of this expression?

(+ 1 (call/cc (λ (k)

 ((λ (x) (* 20 (k x)))

 3))))

A. 3

B. 4

C. 60

D. 61

E. 81

17

Escaping from recursion

Remember our example summing elements of a list
(define (sum-cc lst)

 (call/cc

 (λ (k)

 (letrec ([f (λ (lst)

 (cond [(empty? lst) 0]

 [(not (number? (first lst))) (k #f)]

 [else (+ (first lst) (f (rest lst)))]))])

 (f lst)))))

(sum-cc '(1 2 3 4)) => 10

(sum-cc '(1 2 steve 4)) => #f

We can store the current continuation

(define add1-k 0)

(+ 1 (call/cc (λ (k)

 (begin

 (set! add1-k k)

 0))))

(add1-k 10)

This sets add1-k to be the continuation (+ 1 □) calling it with the value 10,

returns 11

Another example

(define exit-k 0)

(call/cc (λ (k) (set! exit-k k)))

(define (prod-cc lst)

 (cond [(empty? lst) 1]

 [(not (number? (first lst))) (exit-k #f)]

 [else (* (first lst) (prod-cc (rest lst)))]))

(prod-cc '(1 2 3 4 #t 6)) ; returns #f

Continuations are deeply weird

(define A 0)

(set! A (call/cc identity))

(define B A)

This defines A and B to be the continuation (set! A □)

If I call (A 10), it runs that continuation, setting A to be 10

If I call (B 25), it runs the continuation again, setting A to be 25

There is so much more to this

(call-with-composable-continuation proc)

(dynamic-wind pre-thunk value-thunk post-thunk)

prompts

aborts

…

Final exam

Exam Format

Combination of problems (some or all of)

‣ True/false or multiple choice

‣ Short answer

‣ Code to write in DrRacket and uploaded to Blackboard

1 extra credit problem

Exam will be released at 11:00 EST on Friday, December 11

Your solutions are due by 11:00 EST on Saturday, December 12

Late exams are not allowed by College policy (sorry)

Final exam time

During the scheduled final exam time (09:00–11:00 EST), I will be in the class's

Zoom meeting, feel free to hang out in there

If you have a question, send me a private chat either with the question itself or

just say "I have a question" and I'll bring you into a breakout room and you can

ask your question privately there

However, it's better to ask private questions on Piazza instead since the

scheduled time is the last two hours.

Possible question topics

Anything we have covered in the course from day 1 until today

Course evals

Remember to fill out course evals!

